Kinetics and MWD in living polymerizations proceeding
In ideally dispersed systems without mass transfer.
Numerical simulations.
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Introduction

Living irreversible polymerization proceeding in ideally dispersed systems (equal volumes of Studied systems are schematically shown in the Figure 1. They include polymerization in bulk (a large
droplets) differs qualitatively from the analogous processes carried on in a large volume.[1] volume) and in two kinds of fine dispersions (nanodroplets of equal volume): the ideal dispersion, in which
Particularly, in the dispersed systems the chain length distribution (CLD) at complete conversion is all droplets initially contain equal numbers of chains and monomer molecules, and the Poisson
narrower than the Poisson distribution and the CLD dispersity (D) depends on number of chains in ® © O ® © O dispersion, in which reagents are randomly distributed among droplets.
each droplet ng: ®® ® O Q® ® © . . . .

B B B ) ® ® O ® The equilibrium constant K (expressed as the ratio of propagation and depropagation rate constants
D=1+ (DPn 1)(1 l/nc )/ (DPn ) ® ® ® ® kp/kq) was assumed to be equal to: infinity (irreversible process), 5, or 50 I/mol. The mean number of chains

Equilibrium constants of reversible reactions proceeding in dispersed systems also depend on Reagents  Uniform dispersion Poisson dispersion n droplet§ f]C was equal to O_'5’ ¥ 2 3, 4,5, 10, 20, or infinity (polymerlz.atlon .|n bulk). The following
reactants distribution, being (for uniform distribution of reactants) much higher than in a large in bulk of reagents of reagents characteristics of the process (in relation to changes of K, n, and the type of dispersion): number-averaged
volume systems.[2] . initiator and mass-averfa.ge.d degree of polymerizatiqn (DPp and DPVY), dispersity (B),.chain Iengt.h. di.stribution,

Here we present for the first time results of numerical modeling of kinetics of the reversible ) monomer (or monomer solution) nanodroplets (apparent) equilibrium monomer concentration ([Mle), and time of approaching the equilibrium, were
living polymerization process proceeding in dispersed systems. Simulations were done by Monte analysed.

Carlo method (Gillespie algorithm) and by numerical integration of kinetic differential equations. Figure 1. Modelled polymerization systems
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reversible polymerization process carried on in the ideal ‘ ks, ‘
and Poisson dispersions. K= 5 L/mol. The equation describes a reversible transformation of a droplet containing n, chains (Cy of various lengths) and n,, monomer
molecules, due to one act of propagation (proceeding on a chain numerated arbitrarily as the first and having DP equal to i1). k., and
k, are stochastic rates of propagation and depropagation; s, and s; are statistical factors for forward and reverse reactions.
The (apparent) equilibrium monomer concentration _ S.= 1:when i1 (DP of chain 1: C,) differs from DP of other chains
[M]e depends on the number of chains in droplets, being 5 S = j:whenjchains (leftdroplet) have DP equal to /1
the highest for the lowest number of chains in droplets. It & ¢.49 - - Sz= 1:wheni1+1 (DP of the increased chain 1: C,,,,) differs from DP of other chains in a droplet on the right-hand side
is worth to note that in the case of ideal dispersion, for & s.= k:when kchains in the product droplet have DP equal to i1+1
nc=1, the monomer e-qumbrlum concentratllon .cc?rr.e- 0 For n. = 2 the following set of differential kinetic equations describes the entire polymerization process, where Frin,,C,,C} means
sponds to [M]eg value in the bulk system with infinite number fraction of droplets of composition defined by parameters given in braces:
degree of polymerization.
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equilibrium on the mean number of chains in droplets ne. o, _ ’ 7 =k X ErfL.C a6 FPUCC, e S, ) ¥ 23 FHOCC, o} i>1
Equilibrium constant K=5 L/mol. g :
The equilibration time was defined as a time at which =
3 .
value of dispersity D differs no more than 0.3% from the .2 10 E
final valu.e _Of £ (cf. Figure 3). For dispersed sy§tems = ] Ide_al dlspgrS|on. Acknowledgments: The work was supported by the National Science Centre, Poland, grant DEC-2014/15/B/ST5/05321.
characterizing by the low mean number of chains in 3. o —e— Poisson dispersion
droplets the equilibration time is much shorter than for Bibliography
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