Laboratory of Nucleic Acid Therapeutics

In the Laboratory of Therapeutic Nucleic Acids, we perform the synthesis of modified nucleosides, nucleotides and oligonucleotides which are the models for advanced physico-chemical, structural and biological studies. Modified RNA oligonucleotides, mimicking fragments of tRNA containing natural modified nucleosides, are suitable models for the structure-function relationship analysis. DNA models modified with boron clusters provide a platform for the synthesis of functional nanostructures with potential use in the treatment of cancer and civilization diseases. We are looking for active therapeutic nucleic acids exhibiting the properties of inhibitors of gene expression (antisense oligonucleotides, siRNA) or inhibitors of protein enzyme activity (aptamers). We conduct research on the synthesis and function of nucleotide analogs (nucleoside triphosphates, dinucleoside-polyphosphates) involved in cell metabolic processes. We are also interested in the function of proteins interacting with nucleic acids, involved in biosynthesis of modified nucleosides found in tRNA, and proteins from the HIT family interacting with nucleotide signal molecules.

Area of interest:

  • Modifications in transfer ribonucleic acids (Dr Malgorzata Sierant, Dr Katarzyna Kulik, Dr Ewa Radzikowska-Cieciura, PhD student Patrycja Szczupak)

The nucleoside modifications, present at the wobble position of anticodon sequence of transfer ribonucleic acid (tRNA), have been the objects of our interest for many years. Nucleosides in this position play an important role in proper reading of genetic information in the process of protein biosynthesis. In particular, we are interested in 5-substituted 2-thiouridines (R5S2U), found only in three types of tRNA: specific for lysine, glutamic acid or glutamine (tRNALys, tRNAGlu and tRNAGln). In studies carried out together with the Prof. Elzbieta Sochacka team (TUL), we have found that in the oxidative environment at in vitro conditions, the 2-thiouridine is desulfured, i.e. the sulfur atom is removed from the molecule, and the products of this reaction are uridine (U), naturally occurring in RNA and a deprived of sulfur atom nucleoside called 4-pyrimidinone riboside (H2U), the hydrogen bond acceptors and donors pattern of which is different than that of uridine and 2-thiouridine. The presence of the H2U modification can be considered a damage since tRNAs containing the H2U unit may do not exert its function properly. Currently, we aim to clarify whether process of 2-thiouridine desulfuration also occurs under natural conditions, in the eukaryotic cells subjected to oxidative stress.

Recently, our group discovered the mechanism of transformation of 2-thiouridine (S2U) to 2-selenouridine (Se2U) present in the RNA chain. We proved that in the first step S2U is converted into S-geranyl-2-thiouridine, which is an intermediate in the synthesis of Se2U (Scheme below). Both of these processes are catalyzed by the bacterial enzyme tRNA 2-selenoridine synthase (SelU). We are currently conducting research aimed at explaining at the molecular level the function of selenium in nucleosides occurring in the wobble position of tRNA.

The mechanism of transformation of 2-thiouridune-tRNA to 2-selenouridine-tRNA, discovered in our studies was recently published in the FEBS Letters journal at 2018 (Sierant et al. FEBS Lett. 592 (13), 2248-2258, 2018).

  • Composites of nucleic acids and oligofunctionalized boron clusters as a new material for bionanotechnology (Dr Katarzyna Ebenryter-Olbinska, PhD student Damian Kaniowski)

In collaboration with Institute of Medical Biology of PAS, Lodz (Prof. dr hab. Z. Lesnikowski’s team)  we are conducting research on synthesis of a new type of bioorganic composites consisting of nucleic acids (DNA) and boron clusters, their physico-chemical properties and their potential as building blocks to create programmable nanostructures.

As a part of the research we synthesized modified antisense oligonucleotides (ASO) directed towards the EGF receptor gene, post-synthetically conjugated with carboranyl residues and spectrally characterized by HPLC, MS, UV, CD. The implementation of the project requires also synthesis of “oligopodal” building blocks (DNA-oligopods / oligofunctionalized boron clusters) using solid-phase method, study of their physicochemical and biochemical characteristics, as well as testing their ability to create 2D / 3D nanostructures and topology of this particals (AFM, Cryo-TEM). The biological studies of the obtained compounds and nanostructures are also important part of the project (including assessment of the exo- and endogenous level of EGFR protein in cancer cells lines, assessment of cytotoxicity, proliferative changes, nucleolytic stability and oxidative stress).

  • X-ray crystallography of biomolecules (Dr Rafal Dolot)

The research covers crystallization, single crystal diffraction experiments, and solving and refinement of the obtained structures of nucleic acids, oligonucleotides, proteins (mainly from the HIT proteins family) and their complexes with selected ligands (e.g. a modified thrombin binding aptamer complexed with thrombin, HINT1 protein with Ap4A non-hydrolysable analog) and low molecular compounds, e.g. nucleoside and nucleotide derivatives and other biologically active compounds, e.g. potential drugs. Understanding a complete structure of the studied molecules and the manner of intermolecular interactions allows, for example, to determine the mechanism of action of drugs or mechanisms of enzymatic activity of selected proteins. In our Institute, it is possible to conduct diffraction experiments using synchrotron radiation on DESY (Hamburg, Germany) and BESSY (Berlin, Germany) synchrotrons. Currently, CMMS is preparing for the opening of a X-ray analysis laboratory equipped with X-ray diffractometers for single crystal, as well as for and a powder diffraction measurements.

  • Studies on the function of HIT (histidine triad) superfamily proteins in the metabolism of phosphorothioate oligonucleotides (Dr Agnieszka Krakowiak)

At this topic, the mechanism of apoptosis induced by the Fhit protein was elucidated using non-hydrolyzable Ap4A analogs (originally designed and synthesized in house) and which are inhibitors of the enzymatic activity of the studied protein (Krakowiak et al., Bio. Med. Chem. 11 (2011) 5053).  In addition, a new region of interaction between the Fhit protein and the substrate/substrate analog has been found (Krakowiak et al. FEBS Lett. 591 (2017), 548).

In our earlier studies on Hint1 phosphoramidase we determined the stereochemistry of the P-N bond hydrolysis in nucleoside derivatives of tiophosphoramidate (Krakowiak et al. Chem.Comm.  2007, 2163). Moreover, Hint1 was also found as desulfurase of nucleoside 5′-O-thiophosphates and in this reaction the release of hydrogen sulfide was observed (Ozga et al. J. Biol. Chem. 285 (2010), 40809).  Connection of H2S with etiology of many diseases under physiological conditions (e.g. hypertension, Alzheimer’s disease) is known. Further studies have shown that the above desulfuration reaction also occurs inside the cells with participation of the Hint1 enzyme (Figure below, Krakowiak et al. BBA, 1840 (2014) 3357; Krakowiak et al., Biochem. Phar. 163 (2019) 250). This can be important both, in the antisense therapy with phosphorothioate analogs of oligonucleotides, as well as in the possibility of application of phosphorothioate nucleoside analogs as H2S donors in the treatment of some diseases.

  1. J. Guerra, A.-L. Valadao, D. Vlachakis, K. Polak, I. K. Vila, C. Taffoni, T. Prabakaran, A. S. Marriott, R. Kaczmarek, A. Houel, B. Auzemery, S. Déjardin, P. Boudinot, B. Nawrot, N. J. Jones, S. R. Paludan, S. Kossida, C. Langevin, N. Laguette, Lysyl-tRNA synthetase produces diadenosine tetraphosphate to curb STING-dependent inflammation. Science Advances 2020, 6, eaax3333.
  2. Leszczynska G, Cypryk M, Gostynski B, Sadowska K, Herman P, Bujacz G, Lodyga-Chruscinska E, Sochacka E, Nawrot B. C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3′ Synonymous mRNA Codons. Int J Mol Sci. 2020;21(8):2882.
  3. Kaniowski D, Kulik K, Ebenryter-Olbińska K, Wielgus E, Leśnikowski Z, Nawrot B. Metallacarborane Complex Boosts the Rate of DNA Oligonucleotide Hydrolysis in the Reaction Catalyzed by Snake Venom Phosphodiesterase. Biomolecules. 2020;10(5):E718.
  4. Kaniowski D; Ebenryter-Olbinska K; Katarzyna K; Janczak S, Maciaszek A, Bednarska-Szczepaniak K, Nawrot B, Lesnikowski Z. Boron clusters as a platform for new materials: composites of nucleic acids and oligofunctionalized carboranes (C2B10H12) and their assembly into functional nanoparticles. Nanoscale 2020, 12 (1), 103-114.
  5. Kaleta B, Górski A, Zagożdżon R, Cieślak M, Kaźmierczak-Barańska J, Nawrot B, Klimaszewska M, Malinowska E, Górska S, Turło J. Selenium-containing polysaccharides from Lentinula edodes-Biological activity. Carbohydr Polym. 2019, 223:115078.
  6. A. Krakowiak, D. Piotrzkowska, B. Kocon-Rebowska, R. Kaczmarek, A. Maciaszek: The role of the Hint1 protein in the metabolism of phosphorothioate oligonucleotides drugs and prodrugs, and the release of H2S under cellular conditions. Biochem. Pharm. 2019. 163: 250-259. (IF 4.235)
  7. Rozga-Wijas, K; Sierant, M; Wielgus, E; B.J. Miksa: Polyhedral octasilsesquioxanes labelled with the photosensitive cationic phenosafranin dye as a new nanocarrier for therapy and cellular imaging. Dyes and Pigments, 2019, 161: 261-266. (IF 4.018)
  8. Sierant M, Leszczynska G, Sadowska K, Komar P, Radzikowska-Cieciura E, Sochacka E, Nawrot B. Escherichia coli tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via S-geranylated-intermediate. FEBS Lett. 2018, 592(13): 2248-2258. (IF 3.386, MNiSW=30)
  9. Olejniczak AB, Nawrot B, Leśnikowski ZJ. DNA Modified with Boron⁻Metal Cluster Complexes [M(C2B9H(11))2] -Synthesis, Properties and Applications. Int. J. Mol. Sci. 2018, 19(11): 3501. (IF 4.183)
  10. Fraczek T, Kaminski R, Krakowiak A, Naessens E, Verhasselt B, PanethP. ” Diaryl ethers with carboxymethoxyphenacy l motif as potent HIV-1 reverse transcriptase inhibitors with improved solubility” J. Enzyme Inhib. Med. Chem. 2018, 33: 9-16. (IF 4.293)
  11. M. Sierant, K. Kulik, E. Sochacka, R. Szewczyk, M. Sobczak, B. Nawrot: Cytochrome c Catalyzes the Hydrogen Peroxide-Assisted Oxidative Desulfuration of 2-Thiouridines in Transfer RNAs; ChemBiochem. 2018, 19(7): 687-695. (IF 2.593)
  12. Dolot R, Lam CH, Sierant M, Zhao Q, Liu FW, Nawrot B, Egli M, Yang X. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018, 46(9): 4819-4830. (IF 11.147)
  13. Leszczynska G, Sadowska K, Sierant M, Sobczak M, Nawrot B, Sochacka E. Reaction of S-geranyl-2-thiouracil modified oligonucleotides with alkyl amines leads to the N2-alkyl isocytosine derivatives. Org. Biomol. Chem. 2017, 15(25): 5332-5336. (IF 3.49)
  14. Sochacka E, Lodyga-Chruscinska E, Pawlak J, Cypryk M, Bartos P, Ebenryter-Olbinska K, Leszczynska G, Nawrot B. C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms – a factor important for accuracy of reading of guanosine at the 3΄-end of the mRNA codons. Nucleic Acids Res. 2017, 45(8): 4825-4836. (IF 11.147)
  15. K. Ebenryter-Olbińska, D. Kaniowski, M. Sobczak, B. Wojtczak, S. Janczak, E. Wielgus, B. Nawrot, Z. J. Leśnikowski: Versatile method for the site-specific modification of DNA with boron clusters: anti-epidermal Growth Factor Receptor (EGFR) antisense oligonucleotide case. Chem-Eur J. 2017; 23:(65): 16535-16546. (IF 5.16)
  16. Kaniowski, D. ; Ebenryter-Olbińska, K.; Sobczak, M.; Wojtczak, B.; Janczak, S.; Leśnikowski, Z. J., and Nawrot, B. High boron-loaded DNA-oligomers as potential boron neutron capture therapy and antisense oligonucleotide dual-action anticancer agents. Molecules. 2017; 22:(9): E1393. (IF 3.06)
  17. Dolot R, Sobczak M, Mikołajczyk B, Nawrot B. Synthesis, crystallization and preliminary crystallographic analysis of a 52-nucleotide DNA/2′-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with a substrate. Nucleosides Nucleotides Nucleic Acids. 2017, 36(4): 292-301. doi: 10.1080/15257770.2016.1276291.
  18. A. Krakowiak, B. Kocoń-Rębowska, R. Dolot, D. Piotrzkowska: New interactions between tumor suppressor Fhit protein and a non-hydrolyzable analog of its AP4A substrate. FEBS Letters, 2017, 591: 548-559. (IF 3.386, MNiSW=30).
  19. R. Dolot, R. Kaczmarek, A. Sęda, A. Krakowiak, J. Baraniak, B. Nawrot: Crystallographic studies of the complex of human HINT1 protein with a non-hydrolyzable analog of Ap4A. Int. J. Biol. Macromol. 2016, 87: 62-69. (Q2, IF=4.784, MNiSW(A)=25)
  20. R. Pawlowska, D. Korczynski, B. Nawrot, W. J. Stec, A. Chworos: The alpha-thio and/or bet-gamma-hypophosphate analogs of ATP as cofactors of T4 DNA ligase. Bioorganic Chem. 2016, 67: 110-115. (Q2, IF=2.252, MNiSW(A)=20)
  21. M. Duechler, G. Leszczyńska, E. Sochacka, B. Nawrot: Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol. Life Sci. 2016, 73: 3075–3095 (Q1, IF=5.694 MNiSW(A)=40)
  22. G. Leszczynska, K. Sadowska, P. Bartos, B. Nawrot, E. Sochacka: S-Geranylated 2-Thiouridines of Bacterial tRNAs: Chemical Synthesis and Physicochemical Properties. Eur. J. Org. Chem. 2016, 3482–3485. (Q2, IF=3.068, MNiSW(A)=35)
  23. N. D. Abeydeera, M. Egli, N. Cox, K. Mercier, J. N. Conde, P. S. Pallan, D. M. Mizurini, M. Sierant, F.-E. Hibti, T. Hassell, T. Wang, F.-Wu Liu, H.-Min Liu, C. Martinez, A. K. Sood, T. P. Lybrand, Ch. Frydman, R. Q. Monteiro, R. H. Gomer, B. Nawrot, Xianbin Yang: Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Res. 2016, 44: 8052-8064 (Q1, IF=9.202, MNiSW(A)=40)
  24. R. Kaczmarek, A. Krakowiak, D. Korczyński, J. Baraniak, B. Nawrot: Phosphorothioate analogs of P1,P3-di(nucleosid-50-yl) triphosphates: Synthesis, assignment of the absolute configuration at P-atoms and P-stereodependent recognition by Fhit hydrolase. Bioorg. Med. Chem. 2016, 24: 5068-5075 (Q2, IF=2.923, MNiSW(A)=30)
  25. M. Sierant, G. Leszczynska, K. Sadowska, A. Dziergowska, M. Rozanski, E. Sochacka. B. Nawrot: S-Geranyl-2-thiouridine wobble nucleosides of bacterial tRNAs; chemical and enzymatic synthesis of S-geranylated-RNAs and their physicochemical characterization. Nucleic Acids Res. 2016, (Q1, IF=9.202, MNiSW(A)=40)
  26. T. Frączek, A. Paneth, R. Kamiński, A. Krakowiak, P. Paneth: Searching for novel scaffold of triazole non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Enzyme Inhib. Med. Chem. 2016, 31: 481-489. (IF 4.29, MNiSW – 25)
  27. E. Sochacka, R. H. Szczepanowski, M. Cypryk, M. Sobczak, M. Janicka, K. Kraszewska, P. Bartos, A. Chwialkowska, B. Nawrot: 2-Thiouracil deprived of thiocarbonylfunction preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes. Nucleic Acids Res. 2015, 43(5): 2499–2512.
  28. A. Tomaszewska-Antczak, P. Guga, B. Nawrot, G. Pratviel: Guanosine in a Single Stranded Region of Anticodon Stem–Loop tRNA Models is Prone to Oxidatively Generated Damage Resulting in Dehydroguanidinohydantoin and Spiroiminodihydantoin Lesions. Chem. Eur. J. 2015, 21: 1–6.
  29. M. Sierant, D. Piotrzkowska, B. Nawrot: RNAi mediated silencing of cyclin-dependent kinases of G1 phase slows down the cell-cycle progression and reduces apoptosis. Acta Neurobiol. Exp. 2015, 75: 1–12
  30. N. Dyubankova, E. Sochacka, K. Kraszewska, B. Nawrot, P. Herdewijna, E. Lescrinier: Contribution of dihydrouridine in folding of the D-arm in tRNA. Org. Biomol. Chem. 2015, 13(17): 4960-6.
  31. Maciaszek A., Krakowiak A., Janicka M., Tomaszewska-Antczak A., Sobczak M., Mikołajczyk B., Guga P.: LNA units present in the (2′-OMe)-RNA strand stabilize parallel duplexes (2′-OMe)-RNA/[All-RP-PS]-DNA and parallel triplexes (2′-OMe)-RNA/[All-RP-PS]-DNA/RNA. An improved tool for the inhibition of reverse transcription. Org. Biomol. Chem. 13:2375-84 (2015). (IF=3.56).
  32. J. Baraniak, A. Pietkiewicz, R. Kaczmarek, E. Radzikowska, K. Kulik, K. Krolewska, M. Cieslak, A. Krakowiak, B. Nawrot. N-Acyl-phosphoramidates as potential novel form of gemcitabine prodrugs. Bioorg. Med. Chem, 2014, 22: 2133–2140. (IF 2.978)
  33. S. Y. Wu, X. Yang, K. M. Gharpure, H. Hatakeyama, M. Egli, M. H. McGuire, A. S. Nagaraja, T. M. Miyake, R. Rupaimoole, C. V. Pecot, M. Taylor, S. Pradeep, M. Sierant, C. Rodriguez-Aguayo, H. J. Choi, R. A. Previs, G. N. Armaiz-Pena, Li Huang, C. Martinez, T. Hassell, C. Ivan, V. Sehgal, R. Singhania, H.-D. Han, C. Su, Ji Hoon Kim, H. J. Dalton, C. Kovvali, K. Keyomarsi, N. A. J. McMillan, W.illem W. Overwijk, Jinsong Liu, Ju-Seog Lee, Keith A. Baggerly, Gabriel Lopez-Berestein, Prahlad T. Ram, Barbara Nawrot, Anil K. Sood. 2’-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nature Communications, 2014, 5: 3459.
  34. P. Bartos, A. Maciaszek, A. Rosinska, E. Sochacka, B. Nawrot. Transformation of a wobble 2-thiouridine to 2-selenouridine through S-geranyl-2-thiouridine as a likely pathway in the cell. Bioorganic Chemistry, 2014, 56: 49-53.
  35. A. Rosinska, A. Maciaszek, P. Bartos, E. Sochacka, B. Nawrot. Chemical transformation of 2-thiouridine into 2-seleno-uridine via newly discovered S-geranyl-2-thiouridine. Proceedings Collection Symposium Series, 2014,14: 358-360.
  36. P. Bartos, L. Piotrowski, B. Nawrot, G. Pratviel, E. Sochacka. The possible pathway of oxone-mediated desulfuration of 2-thiouridine. Proceedings Collection Symposium Series, 2014,14: 163-166.
  37. A. Krakowiak, R. Pawłowska, B. Kocoń-Rębowska, R. Dolot, W.J. Stec: Interactions of cellular histidine triad nucleotide binding protein 1 with nucleosides 5′-O-monophosphorothioate and their derivatives — Implication for desulfuration process in the cell. Biochim. Biophys. Acta, 2014, 1840: 3357-3366. (IF 4.381).
  38. M. Sierant, Xianbin Yang, B. Nawrot: siRNA Analogs Containing Phosphorodithioate Substitutions. Phosphorus, Sulfur, and Silicon and the Related Elements 2013, 188(4): 427-436
  39. A. Kwiatkowska, M. Sobczak, B. Mikolajczyk, S. Janczak, A. B. Olejniczak, M. Sochacki, Z. J. Lesnikowski, B. Nawrot. siRNAs modified with boron cluster and their physicochemical and biological characterization. Bioconjugate Chem. 2013, 24: 1017-1026 (2013) (IF2012 4.580; 40 pkt)
  40. R. Dolot, A. Wlodarczyk, G. D. Bujacz, B. Nawrot. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of human histidine triad nucleotide-binding protein 2(hHINT2). Acta Crystallographica F. 2013, 69: 783-787. (IF2012 0.552; 15 pkt)
  41. E. Sochacka, P. Bartos , K. Kraszewska, B. Nawrot. Desulfuration of 2-thiouridine with hydrogen peroxide in the physiological pH range 6.6-7.6 is pH-dependent and results in two distinct products. Bioorg. Med. Chem. Lett. 2013, 23: 5803-5805. (IF2012 2.427; 30 pkt)
  42. M. Sobczak, T. Johansson, M. Bulkowski, M. Sochacki, G. Lavén, B. Mikolaczyk, J. Stawinski, B. Nawrot: DNA oligonucleotides with stereodefined phenylphosphonate and phosphonothioate internucleotide bonds: synthesis and physico-chemical properties. Arkivoc 2012, (iv): 63-79. (IF 1.096)
  43. Xianbin Yang, M. Sierant, M. Janicka, L. Peczek, C. Martinez, T. Hassell, Na Li, Xi Li, T. Wang, B. Nawrot : Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. ACS Chem. Biol. 2012, 7: 1214-1220. (IF 6.446)
  44. A. Tomaszewska, S. Mourgues, P. Guga, B. Nawrot, G. Pratviel: A single nuclease-resistant linkage in DNA as a versatile method for the characterization of DNA lesions: application to the guanine oxidative lesion “G+34” generated by metalloporphyrin/KHSO5 reagent. Chem. Res. Toxicol. 2012, 25: 2505-2512. (IF 3.799)
  45. R. Dolot, M. Ozga, A. Włodarczyk, A. Krakowiak, B. Nawrot: A new form of human histidine triad nucleotide-binding protein 1 (hHINT1) in complex with adenosine-5′-monophosphate at 1.38Å resolution. Acta Cryst. F 2012, F68: 883-888. (IF 0.506)
  46. A. Krakowiak, I. Fryc: Rodzina białek triady histydynowej (HIT) – aktywność enzymatyczna a funkcja biologiczna. Postępy Biochem. 2012, 58: 302-313.
  47. E. Sochacka, K. Kraszewska, M. Sochacki, M. Sobczak, M. Janicka, B. Nawrot: The 2-thiouridine unit in the RNA strand is desulfured predominantly to 4-pyrimidinone nucleoside under in vitro oxidative stress conditions. Chem. Commun. 2011, 47: 4914–4916. (IF 5.787)
  48. M. Sierant, Xianbin Yang, M. Janicka, Na Li, C. Martinez, T. Hassell, B. Nawrot: siRNAs with Phosphorodithioate Modification. Coll. Symp. Ser. 2011, 12: 135-139.
  49. R. Dolot, M. Ozga, A. Krakowiak, B. Nawrot: High-resolution X-ray structure of the rabbit histidine triad nucleotide-binding protein 1 (rHINT1)-adenosine complex at 1.10 Å resolution. Acta Crystallogr D Biol Crystallogr. 2011, 67(Pt 7): 601-607. (IF 6.326)
  50. M. Sierant, A. Paduszynska, J. Kazmierczak-Baranska, B. Nacmias, S. Sorbi, S. Bagnoli, E. Sochacka, B. Nawrot: Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference. International Journal of Alzheimer’s Disease Volume 2011, Article D809218, 14 pages.
  51. A. Krakowiak, R. Pęcherzewska, R. Kaczmarek, A. Tomaszewska, B. Nawrot, W. J. Stec: Evaluation of influence of Ap(4)A analogues on Fhit-positive HEK293T cells; cytotoxicity and ability to induce apoptosis. Bioorg. Med. Chem. 2011, 19: 5053-5060. (IF 2.978)
  52. B.Nawrot, E. Sochacka, M. Duechler: tRNA structural and functional chanmges induced by oxidative stress. Cell. Mol. Life Sci. 2011, 68(24): 4023-4032 (IF 6.57)
  53. K. Ebenryter, S. Jankowski,J. Karolak-Wojciechowska, A. Fruziński, J. Kaźmierczak-Barańska, B. Nawrot, E. Sochacka: 2-Thiozebularine: base modified nucleoside fully constrained in 3’-endo conformation in solution. Coll. Czech. Chem. Commun. 2011, 76: 1103-1119.
  54. M. Sobczak, K. Kubiak, M. Janicka, M. Sierant, B. Mikołajczyk, W. J. Stec, B. Nawrot: Synthesis, physico-chemical and biological properties of DNA and RNA oligonucleotides containing short non-ionic internucleotide bond. Coll. Czech. Chem. Commun. 2011,76(12)) 1471-1486.
  55. R. Pruzan, D. Zielinska, B. Rebowska-Kocon, B. Nawrot, S. M. Gryaznov: Stereopure oligonucleotide phosphorothioates as human telomerase substrates. New J. Chem. 2010, 34: 870-874. (IF 2.631)
  56. Smuga, K. Majchrzak, E. Sochacka, B. Nawrot: RNA-cleaving deoxyribozyme 10-23 with amino acid-like functionality operates without metal ion cofactors. New J. Chem. 2010, 34: 934-948. (IF 2.631)
  57. J. J. Wrzesinski, A. Wichlacz, D. Nijakowska, B. Rebowska, B. Nawrot, J. Ciesiolka: Phosphate residue of antigenomic HDV ribozyme important for catalysis that are revealed by phosphorothioate modification. New J. Chem. 2010, 34: 1018-1026. (IF 2.631)
  58. M. Sierant, J. Kazmierczak-Baranska, A. Paduszynska, M. Sobczak, A. Pietkiewicz, B. Nawrot: Longer 19-Base pair short interfering RNA Duplexes Rather Than Shorter Duplexes Trigger RNA Interference. Oligonucleotides 2010, 20(4): 199-206. (IF 2.986)
  59. B. Nawrot, M. Sierant, A. Paduszyńska: Emerging drugs and targets for Alzheimer´s disease. Vol.2. RSC Publishing (ed. A. Martinez) chapter 26, 2010, 2: 228-268.
  60. M. Ozga, R. Dolot, M. Janicka, R. Kaczmarek, A. Krakowiak: Histidine triad nucleotide-binding protein 1 (HINT-1) phosphoramidase transforms nucleoside 5′-O-phosphorothioates to nucleoside 5′-O-phosphates. J. Biol. Chem. 2010, 285: 40809-40818. (IF 5.33).
Podziel się

Recommended sites