Pracownia Procesów Polimeryzacji

  • Badanie mechanizmów oraz kinetyk procesów polimeryzacji ze wzrostem stopniowym oraz łańcuchowym. Obecnie prace w tym zakresie są ukierunkowane na otrzymywanie materiałów biozgodnych i biokompatybilnych (między innymi polimery otrzymywane z takich monomerów cyklicznych jak e-kaprolaktonu i L-laktydu)
  • Opracowywanie i implementacja nowych katalizatorów procesów polimeryzacji w tym rozwijanie autorskiej koncepcji łączenia funkcji katalizatora i inicjatora w jednej cząsteczce związku organicznego.
  • Badanie materiałów zawierających reaktywne komonomery w łańcuchu głównym.
  • Opracowywanie nowatorskich metod syntezy materiałów polimerowych eliminujących konieczność oczyszczania uzyskanych produktów.

Kaluzynski, K.; Pretula, J.; Lewinski, P.; Kazmierski, S.; Penczek, S.
Synthesis and Properties of Functionalized Poly(e-Caprolactone); Chain Polymerization Followed by Polycondensation in One Pot with Initiator and Catalyst in One Molecule. Synthesis and Molecular Structures. Macromolecules 2022, 55 (6), 2210–2221. https://doi.org/10.1021/acs.macromol.1c02325.

 

Lewinski, P.; Kaluzynski, K.; Pretula, J.; Mielniczak, G.; Penczek, S.
Catalysis in Polymerization of Cyclic Esters. Catalyst and Initiator in One Molecule. Polymerization of Lactide. Journal of Catalysis 2022, 405, 249–264. https://doi.org/10.1016/j.jcat.2021.11.038.

 

Penczek, S.; Pretula, J.; Slomkowski, S.
Ring-Opening Polymerization.
Chemistry Teacher International 2021, 3 (2), 33–57. https://doi.org/10.1515/cti-2020-0028.

 

Penczek, S.
Preface.
Polymers for Advanced Technologies 2021, 32 (10, SI), 3834. https://doi.org/10.1002/pat.5446.

 

Penczek, S.; Pretula, J.
Activated Monomer Mechanism (AMM) in Cationic Ring-Opening Polymerization. The Origin of the AMM and Further Development in Polymerization of Cyclic Esters.
ACS Macro Letters 2021, 10 (11), 1377–1397. https://doi.org/10.1021/acsmacrolett.1c00509.

 

Kaluzynski, K.; Pretula, J.; Lewinski, P.; Kaźmierski, S.; Penczek, S.
Catalysis in Polymerization of Cyclic Esters. Catalyst and Initiator in One Molecule. Polymerization of e-Caprolactone.
Journal of Catalysis 2020, 392, 97–107. https://doi.org/10.1016/j.jcat.2020.09.026.

 

Herc, A. S.; Lewiński, P.; Kaźmierski, S.; Bojda, J.; Kowalewska, A.
Hybrid SC-Polylactide/Poly(Silsesquioxane) Blends of Improved Thermal Stability. Thermochimica Acta 2020, 687, 178592. https://doi.org/10.1016/j.tca.2020.178592.

 

Herc, A. S.; Bojda, J.; Nowacka, M.; Lewiński, P.; Maniukiewicz, W.; Piorkowska, E.; Kowalewska, A.
Crystallization, Structure and Properties of Polylactide/Ladder Poly(Silsesquioxane) Blends. Polymer 2020, 201, 122563. https://doi.org/10.1016/j.polymer.2020.122563.

 

Kaluzynski, K.; Lewinski, P.; Pretula, J.; Szymanski, R.; Penczek, S.
Epsilon-Caprolactone Polymerization Catalyzed by Heteropolyacid. Derivation of the Kinetic Equation for Activated Monomer Propagation and Determination of the Rate Constants of Propagation.
Macromolecules 2019, 52 (17), 6405–6415. https://doi.org/10.1021/acs.macromol.9b00672.

 

Lewinski, P.; Pretula, J.; Kaluzynski, K.; Kaźmierski, S.; Penczek, S.
Epsilon-Caprolactone: Activated Monomer Polymerization; Controversy over the Mechanism of Polymerization Catalyzed by Phosphorus Acids (Diarylhydrogen Phosphates). Do Acids Also Act as Initiators?
Journal of Catalysis 2019, 371, 305–312. https://doi.org/10.1016/j.jcat.2019.02.015.

 

Penczek, S.; Pretula, J.; Lewiński, P.
Dormant Polymers and their Role in Living and Controlled Polymerizations; Influence on Polymer Chemistry, Particularly on the Ring Opening Polymerization.
Polymers 2017, 9 (12), 646. https://doi.org/10.3390/polym9120646.

 

Penczek, S.; Lewinski, P.; Pretula, J.; Socka, M.
Professor Andrzej Duda In Memoriam.
Polimery 2017, 62 (4), 239–253. https://doi.org/10.14314/polimery.2017.239.

 

Lewinski, P.; Sosnowski, S.; Penczek, S.
L-Lactide Polymerization – Living and Controlled – Catalyzed by Initiators: Hydroxyalkylated Organic Bases.
Polymer 2017, 108, 265–271. https://doi.org/10.1016/j.polymer.2016.11.070.

 

Penczek, S.; Pretula, J.B.
Ring-Opening Polymerization. In Reference Module in Chemistry,
Molecular Sciences and Chemical Engineering; Elsevier, 2016. https://doi.org/10.1016/b978-0-12-409547-2.11351-4.

 

Pretula, J.; Kaluzynski, K.; Penczek, S.
Polycondensation of Diglycerol with H3PO4. Reversibly Degradable Gels Giving Multi-reactive, Highly Branched Macromolecules.
J. Polymer Science Part A: Polym. Chem. 2016, 54 (20), 3303–3317. https://doi.org/10.1002/pola.28219.

 

Kubisa, P.; Penczek, S.; Slomkowski, S.
With the Work of the IUPAC Commission on Macromolecular Nomenclature (Sub-Committee on Macromolecular Terminology and the Sub-Committee on Polymer Terminology) Abbreviations of Polymers and Guidelines for Creating Them (IUPAC Recommendations from 2014).
Polimery 2016, 61 (7–8), 551–561.

 

Pretula, J.; Slomkowski, S.; Penczek, S.
Polylactides-Methods of Synthesis and Characterization.
Advanced Drug Delivery Reviews 2016, 107 (SI), 3–16. https://doi.org/10.1016/j.addr.2016.05.002.

 

Jones, R.G.; Kitayama, T.; Hellwich, K.-H.; Hess, M.; Jenkins, A.D.; Kahovec, J.; Kratochvil, P.; Mita, I.; Mormann, W.; Ober, C.K.; Penczek, S.; Stepto, R.F.T.; Thurlow, K.; Vohlidal, J.; Wilks, E.S.
Source-Based Nomenclature for Single-Strand Homopolymers and Copolymers (IUPAC Recommendations 2016).
Pure and Applied Chemistry 2016, 88 (10–11), 1073–1100. https://doi.org/10.1515/pac-2015-0702.

 

Sosnowski, S.; Lewinski, P.
L-Lactide Polymerization Catalysed by Tin(II) 2-Ethyl-Hexanoate. A Deeper Look at Chain Transfer Reactions.
Polymer Chemistry 2015, 6 (35), 6292–6296. https://doi.org/10.1039/c5py00748h.

 

Lewinski, P.; Sosnowski, S.; Kazmierski, S.; Penczek, S.
L-Lactide Polymerization Studied by 1H NMR with Diffusion-Ordered Spectroscopy (DOSY): A “One NMR Tube Experiment” Providing Data on Monomer Conversion, Polymer Structure, Mn and Mw.
Polymer Chemistry 2015, 6 (24), 4353–4357. https://doi.org/10.1039/c5py00455a.

 

Lapienis, G.; Szymanski, R.; Penczek, S.
Star Polymers Formed by MPEG Reaction with Diepoxides. The Course of Reaction.
Polymer 2015, 72, 142–153. https://doi.org/10.1016/j.polymer.2015.07.004.

 

Penczek, S.; Pretula, J.; Kubisa, P.; Kaluzynski, K.; Szymanski, R.
Reactions of H3PO4 Forming Polymers. Apparently Simple Reactions Leading to Sophisticated Structures and Applications.
Progress in Polymer Science 2015, 45, 44–70.
https://doi.org/10.1016/j.progpolymsci.2015.01.001.

 

Pretula, J.; Kaluzynski, K.; Szymanski, R.; Penczek, S.
Polycondensation of H3PO4 with Glycerol: From Branched Structures to Hydrolytically Reversible Gels.
J. Polymer Science Part A: Polym. Chem. 2014, 52 (24), 3533–3542. https://doi.org/10.1002/pola.27421.

 

Slomkowski, S.; Penczek, S.; Duda, A.
Polylactides-an Overview.
Polymers for Advanced Technologies 2014, 25 (5, SI), 436–447. https://doi.org/10.1002/pat.3281.

 

Pretula, J.; Kaluzynski, K.; Penczek, S.
Copolymerizations of Tetraethyl Vinylidene Phosphonate. Bisphosphonate Units in the Main Polymer Chain. II.
J. Polymer Science Part A: Polym. Chem. 2014, 52 (11), 1614–1621. https://doi.org/10.1002/pola.27162.

 

Penczek, S.; Pretula, J.; Lewinski, P.
Polymers from Renewable Resources. Biodegradable Polymers.
Polimery 2013, 58 (11–12), 835–846.

 

Penczek, S.; Pretula, J. B.; Kaluzynski, K.; Lapienis, G.
Polymers with Esters of Phosphoric Acid Units: From Synthesis, Models of Biopolymers to Polymer-Inorganic Hybrids.
Israel Journal of Chemistry 2012, 52 (3–4, SI), 306–319.
https://doi.org/10.1002/ijch.201100162.

 

Penczek, S.; Kaluzynski, K.; Pretula, J.
Bisphosphonate Units in the Main Polymer Chain: The First Synthesis.
J. Polym. Sci. Part A: Polym. Chem. 2012, 50 (15), 3030–3038.
https://doi.org/10.1002/pola.26083.

 

Penczek, S; Kaluzynski, K.; Pretula, J.
Polyethylene-CaCO3 Hybrid via CaCO3-Controlled Crystallization in Emulsion.
J. Polym. Sci. Part A: Polym. Chem. 2011, 49 (5), 1289–1292. https://doi.org/10.1002/pola.24529.

Grant NCN Opus 2016/23/B/ST5/02448 pt.: „Kinetyka i mechanizm polimeryzacji wobec organicznych katalizatorów z jednoczesną funkcją inicjatorów (INICAT). Właściwości otrzymywanych polimerów”

Podziel się

Polecane strony